Bleaching of Bamboo (Phyllostachys bambusoides) Kraft-AQ Pulp with Sodium Perborate Tetrahydrate (SPBTH) after Oxygen Delignification

Onur Tolga Okan, İlhan Deniz, İbrahim Yildirim


The most prominent environmental problems facing the paper industry are those due to bleaching processes that use chlorine compounds. In this study, totally chlorine free (TCF) bleaching sequences were applied to Phyllostachys bambusoides bamboo unbleached kraft anthraquinone (AQ) pulp, using different conditions with Oxygen (O) delignification and Sodium Perborate Tetrahydrate (SPBTH) stages. The effects of oxygen pressure, SPBTH ratio, and bleaching time were studied to maximize the brightness gain at the lowest viscosity loss. Unbleached kraft-AQ bamboo pulp was applied to first stage oxygen delignification for bleaching with under 5 bar, 3% NaOH, and 12% concentration conditions. Following the chelated bleaching, Sodium Perborate Tetrahydrate (SPBTH) bleaching was carried out as the final stage. The optimum bamboo kraft pulp bleaching conditions were SPBTH level: 4%, MgSO4: 0.5%, Na2SiO3: 3%, bleaching time: 80 min., reaction temperature: 70°C, and concentration: 12%. An overall increase in the physical properties of paper was evident up to an SPBTH level of 4%. When the SPBTH level and bleaching time increased, the kappa number, viscosity, opacity, and yellowness were decreased, but the brightness was increased. Oxygen delignification with chelatation and SPBTH as a bleaching sequence was shown to be a promising alternative to produce high-quality pulp from bamboo for cleaner paper.


Bamboo; Boron compounds; Environment-friendly bleaching; Oxygen delignification

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126