Pyrolysis Characteristic of Tobacco Stem Studied by Py-GC/MS, TG-FTIR, and TG-MS

Bei Liu, You-Ming Li, Shu-Bin Wu, Yan-Heng Li, Shan-Shan Deng, Zheng-Lin Xia

Abstract


Pyrolysis characteristics and mechanism of tobacco stem were studied by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), thermogravimetric analyzer coupled with Fourier transform infrared spectrometry, and mass spectrometry (TG-FTIR and TG-MS) techniques. The composition of evolved volatiles from fast pyrolysis of tobacco stem was determined by Py-GC/MS analysis, and the evolution patterns of the major products were investigated by TG-FTIR and TG-MS. Py-GC/MS data indicated that furfural and phenol were the major products in low temperature pyrolysis, and these were generated from depolymerization of cellulose. Indene and naphthalene were the major products in high temperature pyrolysis. TG-FTIR and TG-MS results showed that CO, CO2, phenols, aldehydes, and ketones were released between 167ºC and 500ºC; at temperatures >500ºC, CO and CO2 were the main gaseous products.

Keywords


Tobacco stem; Pyrolysis; TG-FTIR; TG-MS; PY-GC/MS

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126