Prediction of Bending Properties for Turkish Red Pine (Pinus brutia Ten.) Lumber using Stress Wave Method

Ergun Guntekin, Zeynep Gozde Emiroglu, Tugba Yilmaz

Abstract


Bending properties of Turkish red pine (Pinus brutia Ten.) lumber pieces were predicted using the stress wave method. The lumber samples were taken from 30- to 80-year-old red pine trees harvested from a southwest site in Turkey. MTG timber grader was utilized to predict modulus of elasticity (MOE) and modulus of rupture (MOR) values of lumbers with 40 mm x 90 mm in cross section and 3 meters in length. Static MOE and MOR values of the lumber pieces were determined using a three-point bending test. The coefficient of determination between measured and predicted MOEs was 0.84 and that between dynamic MOE and bending strength was 0.69. However, the coefficient of determination between bending MOE and strength was only 0.45. It seems that dynamic MOE has better prediction capability for bending strength than static MOE. Effects of some variables such as log and visual grades on dynamic MOE values were also determined statistically. Natural frequency of the lumbers showed far more significant effects than other variables. It is apparent that the stress wave method has the potential to predict the bending properties of Turkish red pine lumber.

Keywords


Bending properties, Prediction; Stress wave; Turkish red pine

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126