Curing Behavior and Properties of Rice Husk/Melamine Formaldehyde Composites

Cong Chen, Weihong Guo, Yuli Zhou, Pengcheng Xiao, Yifan Li, Jikui Wang


Melamine formaldehyde (MF) composites filled with rice husk powder were prepared by compression molding. The curing processes of the composites with different powder contents and powder particle sizes were studied by dynamic mechanical analysis. Gelation temperature and curing time were subjected to optimization of their mechanical and thermal properties. The rice husk powder loading in the MF matrix and the powder particle size were found to be critical factors governing the curing behavior and properties of the composite. Composites with larger content or smaller powder size had higher gelation temperatures and lower viscosities. The curing times of the composites were also influenced by the powder content. Flexural strength and flexural modulus increased with powder loading in the 20 to 90 mesh particle size range, while notched impact strength decreased. The mechanical properties of the composites decreased to a considerable extent when the fibers were too small to achieve strong interfacial adhesion. Morphological (scanning electron microscopy) and thermal studies (heat deflection temperature) were also conducted.


Melamine formaldehyde; Rice husk; Dynamic mechanical analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126