The Content of Different Hydrogen Bond Models and Crystal Structure of Eucalyptus Fibers during Beating

Longting Yuan, Jinquan Wan, Yongwen Ma, Yan Wang, Mingzhi Huang, Yangmei Chen


Different hydrogen bond and crystalline cellulose structure models of eucalyptus fibers were studied by Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C NMR). It was shown that when the beating time was increased from 5 to 15 min., the content of inter-molecular hydrogen bonds, O(6)H···O3′, increased by 11.2% as measured by FTIR. However, the content of the inter-molecular hydrogen bonds decreased quickly as the beating time was increased from 15 to 25 min. Meanwhile, the contents of the intra-molecular hydrogen bond, O(2)H···O(6) and O(3)H···O(5), changed from 8.25% to 8.18% and from 39.33% to 31.27%, respectively, when the beating time increased from 5 to 15 min. The content of the intra-molecular hydrogen bonds increased quickly with the further increase in the beating time. It was shown by XRD that there was a little difference in the average width of crystallite size in the (002) lattice plane when the beaten time was between 5 to 25 min. Non-linear fitting of the cellulose C4 region of the 13C CP/MAS NMR showed that the average lateral fibril aggregate dimensions and the content of different cellulose polymorphs changed during beating.


Eucalyptus fibers; Beating; Hydrogen bond; Crystal structure

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126