Mode II Critical Stress Intensity Factor of Medium-Density Fiberboard Measured by Asymmetric Four-Point Bending Tests and Analyses of Kink Crack Formation

Hiroshi Yoshihara


Using medium-density fiberboard specimens, asymmetric four-point bending tests were conducted to obtain the Mode II critical stress intensity factor for this in-plane system. Because the medium-density fiberboard is in-plane quasi-isotropic about its board plane, the crack propagates obliquely with respect to the initial crack direction under the asymmetric four-point loading condition. A finite element analysis is required to obtain the Mode II stress intensity factor. The analysis herein was conducted to take into account the kink crack formation. In addition, a three-point bend end-notched flexure test was also conducted, and the results obtained by the experiments and numerical calculations were compared. When the initial crack’s length-to-specimen’s depth ratio ranged from 0.85 to 0.95 and when the additional crack length was taken into account, the Mode II critical stress intensity factor KIIc was appropriately obtained by the asymmetric four-point bending test.


Medium-density fiberboard; Critical stress intensity factor; Asymmetric four-point bending test; Finite element analysis; Virtual crack closure technique; Kink crack

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126