Influence of Isolation Condition on Structure of Milled Wood Lignin Characterized by Quantitative 13C Nuclear Magnetic Resonance Spectroscopy

Dou-yong Min, Sarah Waters Smith, Hou-min Chang, Hasan Jameel


Milled wood lignin (MWL) was widely characterized to demonstrate the structure of native lignin by liquid state 13C NMR. As an isolated lignin, the structure of MWL was influenced by the isolation procedure performed. In this article, hardwood (sweetgum) and softwood (loblolly pine) were subjected to various isolation conditions to elucidate the effect of extracting temperature and milling time on the structure of MWL. Purification was also carried out on the crude MWL. The structure of the crude MWL and the purified MWL was identified and quantified by 13C NMR. Based on the yield and the lignin content of the crude MWL, the optimal isolation was achieved with 8 h milling and 20 °C extracting for hardwood. For softwood, the optimal isolation condition for crude MWL was 12 h milling and 20 °C extracting.


Quantitative 13C NMR; Milled wood lignin; Isolation procedure; Sweetgum; Loblolly pine

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126