Characterization of Hemicelluloses Obtained from Partially Delignified Eucalyptus Using Ionic Liquid Pretreatment

Ji-Kun Xu, Yong-Chang Sun, Feng Xu, Run-Cang Sun


Lignocellulosic biomass is a relatively inexpensive and abundant feedstock for biofuel production. The key to unlocking the recalcitrance of lignocelluloses is an effective pretreatment process. A promising new pretreatment method for lignocellulosic biomass is the use of ionic liquids (ILs). In this study, wood flour was partially dissolved in the novel ionic liquid 1-butyl-3-methylimidazolium acesulfamate ([BMIM]Ace) mixed with different organic solvents (1,4-dioxane, acetone, methanol, DMSO, and DMF) followed by precipitation in water. Hemicelluloses were successfully extracted from the carbohydrate-enriched residues by an alkaline ethanol solvent. Sugar analysis of the hemicellulosic fractions indicated that xylose (63.25-74.85%) was the major sugar component, while small amounts of glucose (4.85-14.40%) and galactose (4.49-7.32%) were also observed. Molecular weights of these fractions varied between 49.330 and 60.760 g/mol as determined by GPC. NMR studies revealed that the hemicelluloses had a backbone of β-(1→4)-linked-D-xylopyranosyl units and were branched mainly through 4-O-methyl-α-D-glucuronic acid. The thermal degradation behavior of the hemicellulosic fractions showed that the most significant degradation occurred between 242 and 300 °C.


Pretreatment; Ionic liquid; Hemicelluloses; Characterization

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126