Analysis of Nondestructive Testing for Mechanical Properties of LVL at Different Relative Humidities Based on Fuzzy and Classical Mathematics

Yingcheng Hu, Bing Xue


Laminated veneer lumber (LVL) panels made from poplar (Populus ussuriensis Kom.) and pine (Pinus sylvestris L. var. mongolica Litven.) veneers were tested for mechanical properties in this work. Four different nondestructive testing (NDT) methods and the static bending test were conducted on the LVL. The NDT methods included the longitudinal vibration method, longitudinal transmission method, and in-plane and out-plane flexural vibration methods. The effects of relative humidity on the modulus of elasticity (MOE) and bending strength (MOR) of LVL with vertical load were investigated. Four relative humidities were tested, namely 40%, 50%, 60%, and 70%. The feasibility of NDT testing on LVL was analyzed by fuzzy and classical mathematics. The results showed that the MOE and MOR of LVL diminished with an increase of relative humidity, and the analysis results of fuzzy neartude and correlation coefficients were same. There was a good linear correlation between NDT results and MOE or MOR of poplar and pine LVL.


Laminated veneer lumber (LVL); Nondestructive testing (NDT); Fuzzy neartude; Poplar; Pine; Relative humidity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126