One-Step Heterogeneous Catalytic Process for the Dehydration of Xylan into Furfural

Hui-Ling Li, Shuai-Yang Wang, Wen-Ju Wang, Jun-Li Ren, Feng Peng, Run-Cang Sun, Lei Liang

Abstract


Xylan, the major component of hemicellulose in hardwoods and various grasses, has great potential for bio-refinery applications such as the production of energy and high value-added chemicals. A convenient and environment-friendly catalytic process for the conversion of xylan into furfural in ultrapure water using chromium-loaded perovskite-type oxides as the solid catalyst has been investigated. The crystalline and morphologies of the catalysts were studied by X-ray diffraction analysis (XRD) and scanning electron microscope analysis (SEM), and the reactions were optimized by varying different parameters. It was found that LaCo0.8Cu0.2O3 modified with 1.5wt% chromium had the highest catalytic activity in the transformation of xylan to furfural at a temperature of 433 K in a 1:600 weight ratio of xylan to hyperpure water for 10 h; the corresponding yield was 21.2% for furfural. Furthermore, a possible mechanism for the dehydration of xylan to furfural using Cr-LaCo0.8Cu0.2O3 as a catalyst is proposed.

Keywords


Xylan; Furfural; Perovskite-type oxides; Heterogeneous catalysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126