Effect of Environmental Conditions on the Mechanical Properties and Fungal Degradation of Polycaprolactone/ Microcrystalline Cellulose/Wood Flour Composites

Ronald Sabo, Liwei Jin, Nicole Stark, Rebecca E. Ibach

Abstract


Polycaprolactone (PCL) filled with microcrystalline cellulose (MCC), wood flour (WF), or both were characterized before and after exposure to various environmental conditions for 60 days. PCL/WF composites had the greatest tensile strength and modulus compared to neat PCL or PCL composites containing MCC. Electron microscopy indicated better adhesion between WF particles and PCL than between MCC particles and PCL. Neither wood flour nor MCC cellulose appeared to significantly affect the crystallinity of PCL. Environmental conditioning resulted in only minor deterioration of mechanical properties, although samples soaked in water had greater deterioration of mechanical properties than those in high humidity or freezing environments. After a modified 12-week soil block test, specimens made with wood flour lost weight and showed signs of decay after exposure to the brown-rot fungus Gloeophyllum trabeum.

Keywords


Thermoplastic resin; Polycaprolactone; Wood flour; Microcrystalline cellulose; Composite; Environmental degradation; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126