Application of Citrus sinensis Solid Waste as a Pseudo-Catalyst for Free Cyanide Conversion under Alkaline Conditions

Bruno Alexandre Quistorp Santos, Seteno Karabo Obed Ntwampe, James Hamuel Doughari, Gift Muchatibaya


In this study, Citrus sinensis (C. sinensis) solid waste was used to catalyze the conversion of free cyanide (F-CN) under alkaline conditions; conditions which represent most industrial wastewater containing F-CN. Acid hydrolysis of the solid waste increased the catalytic conversion of F-CN by 3.86 compared to the unhydrolysed solid waste. The conversion of F-CN using unhydrolysed and hydrolysed solid waste increased linearly with an increase in pH and temperature. The maximum catalytic conversion of a 100 mg F-CN/L solution containing 0.1% (w/v) of unhydrolysed and hydrolysed C. sinensis solid waste was 17.82% and 62.48%, respectively, at a pH of 12 and a temperature of 50 °C. The catalytic process was largely dependent on the availability of activated hydroxyl groups in the solid waste. As most wastewater contains heavy metals, it was determined that the presence of metallic species (Ni, Zn, and Cu) reduced the conversion of F-CN as the metallic ions attached to the hydroxyl groups. The observed reduction was 26.35% when 10 mg/L of heavy metals were present in the F-CN solution containing the hydrolysed solid waste at a pH of 12 and 40 °C.


Citrus sinensis; Free cyanide; Catalysis; Wastewater treatment

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126