Modeling of the Mechanical Properties of a Wood-Fiber/Bicomponent-Fiber Composite

Herman van Dyk, Perry Peralta, Ilona Peszlen

Abstract


An engineered composite that combines a wood fiber core, a bicomponent fiber face, and a bicomponent fiber back was evaluated for its elastic response using laminate theory. Using the properties of the individual laminae as input variables, the laminate’s elastic modulus, axial strain, and lateral strain were determined by means of the model, and compared with values determined experimentally. The model yielded an axial elastic modulus of 950 MPa, which did not differ substantially from the measured value of 920 MPa. Statistical analyses showed that the measured and calculated strains were not significantly different in either the axial or lateral directions. The model underpredicted the strains along the fiber direction of the bicomponent fiber sheets by approximately 4%. A greater difference (12%) between predicted and measured values was observed in the lateral direction.

Keywords


Bicomponent fiber; Fiberboard; Needlepunching; Composite; Laminate; Elastic modulus; Shear modulus; Poisson’s ratio

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126