Study of Chemical Modification by Impregnation of Fresh Poplar Log and by Hot-Press Drying Process

Heyu Chen, Qian Lang, Hao Zhang, Guofeng Wu, Xue Zheng, Junwen Pu


In this work, fresh poplar logs were chemically impregnated with a pulse-dipping machine. The impregnated timbers were compressed and dried by use of a multilayer hot-press drying kiln. With a compression rate of 28.67%, such an approach not only enhanced the density and mechanical properties of the treated wood, but also influenced the set recovery from the compressive deformation. Extra urea was added into the modifier to optimize the effect of the set recovery; however the result was a slight decrease in the mechanical properties. The positions of the X-ray diffraction (XRD) peaks did not change, which indicated that the structure of the cellulose was not noticeably affected by this treatment. The Fourier transform infrared spectroscopy (FT-IR) analysis showed that the intensity amide (N–C=O) absorption peak increased significantly due to the chemical impregnation. Scanning electron microscopy (SEM) showed that the high strain in the hot-press process drastically reduced the volume of void spaces in the specimens and deformed the cell lumens.


Poplar wood; Methylolurea; Urea; Chemical impregnation; Hot-press drying

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126