An Optimal Thermo-Hydro-Mechanical Densification (THM) Process for Densifying Balsam Fir Wood

Ling Li, Meng Gong, Naxin Yuan, Dagang Li

Abstract


To better utilize low-density softwood, a thermo-hydro-mechanical densification process performed in an open system was studied to enable the manufacture of densified wood with a hard surface, strong bonding, and good dimensional stability. This study was aimed at optimizing three densification parameters, i.e., compression ratio (CR), temperature, and time, for balsam fir (Abies balsamea (L.) Mill.). The Brinell surface hardness, bond strength, and thickness recovery ratio of densified fir were examined. It was found that the optimal densification parameters were a CR of 60%, a temperature of 230 ºC, and a time of 20 minutes. The surface hardness and bond strength of optimized densified fir were about 30 and 8 MPa, respectively. The thickness recovery ratio of the densified fir after a 2-hour cold water soaking and another 2-hour boiling treatment was about 10%. Because the densified fir in this study was used for indoor applications only, its thickness recovery ratio could be minimal under conditions of use.

Keywords


Bond strength; Optimal thermo-hydro-mechanical densification; Thickness recovery; Softwood; Surface hardness

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126