Layer-by-Layer Adsorption of Two Cellulose-Based Polyelectrolytes on Cellulose Fibers. Dependence of pH and Ionic Strength on the Resulting Charge Density as Measured by Polyelectrolyte Titration

Ola Sundman, Janne Laine

Abstract


The charge density of a bleached Kraft hardwood pulp, subjected to layer-by-layer adsorption of the oppositely charged cellulose derivative polyelectrolytes hydroxyethylcellulose ethoxylate, quaternised (HECE), and carboxymethyl cellulose (CMC), was studied by polyelectrolyte titration as a function of pH and ionic strength. The experimental design included a simultaneous variation of the experimental parameters, and the trends were evaluated with the help of partial least squares regression. As expected from the literature, the data indicate that both pH and ionic strength influence the charge of cationic fibers. It is also obvious that CMC as an outermost layer is more sensitive to changes in pH than the deprotonation of ≡COOH groups suggests. High ionic strength seems to be beneficial for the adsorption of HECE, while the pH dependence seems much more complicated. The non-linear pH dependence indicates that, in addition to electrostatic interactions, entropy factors and hydrogen bonding between OH groups on both the substrates and ligands are responsible for the adsorption, which is in agreement with literature on the subject.

Keywords


Layer-by-layer adsorption; Cellulosic polyelectrolyte; Fiber charge density

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126