Optimizing Alkali-cellulase Processing of Biomass into Glucose

John J. Savarese

Abstract


The alkali-cellulase processing of biomass into glucose near where it is grown has already been demonstrated at laboratory scale. Glucose can be fermented locally or transported to distant facilities for the production of bioethanol as fuel. This renewable energy process uses materials and methods that are readily available and that can be implemented at local or regional sites near growing fields. This study evaluated the effects on glucose production of different durations and amounts of NaOH pretreatment as well as different lengths of time for adsorption of cellulase. The pretreatment of corn stover (CS) with NaOH at 0.1 g/g CS for 6 h at a temperature of 100 °C resulted in the most acceptable glucose release following enzymatic hydrolysis. The exposure of pretreated CS solids to cellulase for 1 h resulted in the most acceptable release of glucose following the volume expansion at 10-fold dilution. The residual solids remaining after 3 h of enzymatic hydrolysis can be recycled to increase yields. The resulting glucose solution can be concentrated to minimize transportation costs when delivered to conventional grain fermentation facilities. This study introduced new conditions that enhanced practicality of the alkali-cellulase processing of biomass by allowing the processing time to be reduced to 10 h.

Keywords


Biomass conversion; Cellulose; Pretreatment; Cellulase; Alkali-cellulase; Alkcell; Bioethanol

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126