Process Modeling of the Batch Acetylation of Cotton Linter Pulp

Peicheng Luo, Chuanxian Xin, Xiaolong Ma, Yinchun Liang, Zhen Jiao, Songwei Xu, Jie Zhang

Abstract


Following previous kinetic investigations of the acetylation of cotton linter pulp (Luo et al. 2013), a mathematical model was set up based on the mass and energy balances to simulate the batch acetylation process; a particular goal was to predict the temperature profile. The equations were discretized using a time-dependent finite difference method. The parameters for the model, including the kinetic parameters and heat transfer rate, were well estimated from the literature and our previous work. The model using the least-mean-square-error criterion optimizes the unknown parameters. The proposed model provides an accurate prediction of the process, including the temperature profile, peak temperature, and DS value under the peak temperature. The content of the catalyst, sulfuric acid, has a dramatic effect on the temperature profile. A slight increase in sulfuric acid content will lead to a faster dissolution process for the sulfated cellulose fibers, whereas the reaction rate of the sulfated fibers with acetic anhydride in the liquid phase is not affected. The optimized values of the activation energy are 11.0 and 7.6 kJ/mol for the dissolution processes with low and high sulfuric acid contents, respectively.

Keywords


Process modeling; Batch acetylation; Cotton linter; Cellulose acetate

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126