Isolation and Characterization of Cellulose Nanofibers from Bambusa rigida

Wen He, Shenxue Jiang, Qisheng Zhang, Mingzhu Pan


Alpha cellulose was extracted from Bambusa rigida fibers by carrying out Soxhlet extraction and bleaching and alkali treatments with acidified sodium chlorite solution and sodium hydrate solution. Then, cellulose nanofibers were isolated from α-cellulose with the combination of (33 wt%) sulfuric acid and ultrasonic treatment. The nano-sized fibers were successfully isolated, and the average diameters were about 10 to 30 nm. FTIR showed that a majority of the hemicelluloses and lignin were removed from the raw fiber and that the chemical constituents of α-cellulose and cellulose nanofibers were similar. XRD showed that the obtained nano-fibers presented a cellulose I structure, and thus the crystallinity of cellulose nanofibers was significantly increased. TGA showed that the thermal stability of the cellulose nanofibers was significantly improved. The relative crystallinity and thermal degradation temperature of the cellulose nanofibers reached 61.21% and 315.2 °C, respectively.


Bambusa rigida; α-Cellulose; Cellulose nanofiber; Thermal properties; X-ray diffraction (XRD)

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126