Dynamic Monitoring of Tannin-based Foam Preparation: Effects of Surfactant

Maria Cecilia Basso, Antonio Pizzi, Alain Celzard


Three tannin-based foam formulations differing in the type of surfactant added were tested during foaming via simultaneous monitoring of the variation in temperature, foam rising rate, internal foam pressure, and dielectric polarization, the latter being a direct measure of the setting and curing of a thermosetting foam. This monitoring is an effective descriptor of the process and possible characteristics of the foam being prepared and constitutes an invaluable tool for foam formulation. The addition of a surfactant was shown to have a major effect on foam dynamics by retarding the onset of cross-linking to a lesser or greater extent in relation to the peak of maximum temperature in self-blowing foams. Cationic surfactants, or non-ionic surfactants capable of transforming into cationic species under the acidic environmental conditions used for tannin-based foams, were found to retard cross-linking more markedly than did non-ionic surfactants.


Tannin foams; Surfactant effect; Foaming temperature; Dielectric polarization; Foaming pressure; Foam rising rate; Foam curing; Simultaneous measure

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126