Potential Use of Cellulose from Kenaf in Polymer Electrolytes Based on MG49 Rubber Composites

Serawati Jafirin, Ishak Ahmad, Azizan Ahmad

Abstract


The possibility of using cellulose from kenaf as reinforcing fibres in lithium-conducting composite polymer electrolytes based on 49% poly(methyl methacrylate)-grafted natural rubber and LiCF3SO3 has been explored. Cellulose was extracted from kenaf bast fibres by a two-step chemical treatment, specifically an alkali treatment and a bleaching process. High-performance composite polymer electrolytes were prepared by solution casting with various compositions of cellulose (0-10 wt%). Scanning electron microscopy was used for morphological studies of the kenaf fibres at each stage of treatment. The morphology of the electrolytes showed a good dispersion of the cellulose fibres. Infrared spectroscopy showed significant interactions between Li+ ions from the salt and the C=O and C-O-C groups of methyl methacrylate. X-ray diffraction analysis showed that the crystallinity of the polymer host increased upon addition of cellulose and decreased upon addition of salt. Composite electrolytes with 4 wt% cellulose exhibited the best mechanical performance with 10.9 MPa and 995 MPa for tensile strength and Young’s modulus, respectively. The electrolyte films were analyzed by electrochemical impedance spectroscopy and the optimum value of ionic conductivity of SPE with cellulose was 5.3×10-7 Scm-1. The addition of cellulose involved a weak decrease of the conductivity, which might be due to interactions between cellulose, polymer, and LiCF3SO3. The incorporation of cellulose fibres in polymer electrolytes provides a high reinforcing effect at an acceptable level of ionic conductivity.

Keywords


Composite polymer electrolytes; Kenaf; Cellulose; Ionic conductivity; Mechanical properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126