Optimization of Mesoporous Activated Carbon from Coconut Shells by Chemical Activation with Phosphoric Acid

Xinying Wang, Danxi Li, Wei Li, Jinhui Peng, Hongying Xia, Libo Zhang, Shenghui Guo, Guo Chen

Abstract


Mesoporous activated carbons were prepared from coconut shells by the method of chemical activation with H3PO4. Effects of main influence factors on the yield and adsorption properties of activated carbon were studied via orthogonal experiments. Experimental results under the optimum conditions were as follows: the yield of the activated carbon was 36.90%; methylene blue adsorption was 21.5 mL/0.1 g; and the iodine number was 889.36 mg/g. The surface area of the activated carbon prepared was 891 m2/g, as determined by the BET method. Horvath-Kawazoe equations (H-K) and density functional theory (DFT) were introduced to analyze the porous structures of the activated carbon. It was shown that the activated carbon was mesoporous, with a total pore volume of 0.7233 mL/g, a micropore volume of 37.06%, a mesopore volume of 62.85%, and a macropore volume of 0.07%. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies demonstrated the results of the pore structure analysis.

Keywords


Activated carbon; Coconut shells; Phosphoric acid; Pore structure; Microstructure

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126