Medium-Temperature Pyrolysis of Corn Stover Improved by Biopretreatment with White-rot Fungi

Xuewei Yang, Dhrubojyoti Dey Laskar, Fuying Ma, Xiaoyu Zhang, Shulin Chen


This work investigated the ability of biopretreatment with different white-rot fungi to improve the medium-temperature pyrolysis of biomass. It was found that biopretreatment can significantly increase the production of phenols and glucopyranoside up to 2.82 and 2.94 fold, respectively. Biopretreatment can also decrease the content of carbon dioxide, propanol, and propanone, making the pyrolysis more efficient and product-oriented. Moreover, distinct bio-deconstruction mechanisms can result in different pyrolysis products. By deconstructing cellulose and modifying lignin with a minimum of demethoxyation, white-rot fungus Irpex lacteus CD2 can improve the production of acetaldehyde (up to 6.72%) and methoxyl substitutes such as dimethoxyphenyl (up to 21.59 folds). By decomposing carbohydrates, carbonxyl, and methoxyl groups, white-rot fungi Pleurotus ostreatus BP2 and Echinodontium taxodii 2538 can increase the production of D-allose (up to 3.09%) and formic acid (up to 6.98%), while decreasing the methoxyl substitutes such as 2-methoxy-4-vinylphenol (up to 70.08%).


Bio-pretreatment; Biomass; White-rot fungi; Medium-temperature pyrolysis; Py-GC/MS; Solid state 13C CP/MAS NMR

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126