Experimental Determination and Empirical Modeling of Oxalate Formation During Oxygen Delignification of Wheat Straw Kraft Pulp

Shilin Cao, Xiaojuan Ma, Xiaolin Luo, Fang Huang, Liulian Huang, Lihui Chen


The formation of oxalate during oxygen delignification causes a number of operational problems in pulp and paper mills. In this work, the oxygen delignification of wheat straw pulp was carried out under various conditions and the concentration of resulting oxalate in the effluent was determined. The experimental results show that the amount of oxalate in the effluent was closely related to the reaction conditions, specifically reaction temperature, oxygen pressure, and alkali charge. Raising reaction temperature and/or oxygen pressure could promoted oxalate formation. The oxalate concentration increased linearly with the consumption of alkali but logarithmically with reduction of kappa number. An empirical model for describing the oxalate formation in the oxygen delignification of wheat straw pulp was generated with a reasonably high correlation coefficient (R2=0.909), which can provide useful guidance for control of oxalate formation during oxygen delignification through adjustment of process parameters.


Wheat straw; Oxygen delignification; Oxalate formation; Empirical model

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126