Optimization of Bark Fast Pyrolysis for the Production of Phenol-Rich Bio-oil

Xueyong Ren, Jinsheng Gou, Wenliang Wang, Qiang Li, Jianmin Chang, Ben Li

Abstract


Bark is one of the most under-utilized types of lignocellulosic biomass in the forest industry. In this study, bark fast pyrolysis was optimized for phenols yield using response surface methodology (RSM), considering the pyrolysis temperature, gas flow rate, and biomass particle size. The bio-oil generated under optimal conditions was then characterized by gas chromatography-mass spectrometry (GC-MS), ultimate analysis, and several physical methods. A regression equation was estimated based on the statistical analysis. It was found that the optimal conditions for phenols yield were 485 °C (pyrolysis reaction temperature), 28 L/min (gas flow rate), and 0.35 mm (biomass particle size), giving an experimental phenols yield of 13.2 wt%. The bio-oil obtained in optimum conditions met ASTM standard D7544-12 and contained up to 30.42% phenols. This renewable, phenol-rich bio-oil may be a good feedstock for phenolic-based chemicals, such as phenolic resin and phenoplast.

Keywords


Lignocellulosic biomass; Bark; Fast pyrolysis; Optimization; Response surface methodology (RSM); Phenols

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126