Synthesis and Application of a Cationic Polyacrylamide Dry Strength Agent with Anionic Content

Guangyan Wang, Yi Jing


A new net-cationic polyacrylamide dry strength agent was synthesized through free radical polymerization using acrylamide (AM), itaconic acid (IA), N,N-dimethylacrylamide (F), and sodium methallyl sulfonate (T). Ethylene diamine tetraacetic acid was used as a chelating agent; dimethylaminoethyl methacrylate methyl chloride (DMC) solution was used as a cationic monomer, and ammonium persulfate (APS) was used as an initiator. Orthogonal design and single-factor experiments were utilized to study the effect of many factors, such as reaction time, the ratio of monomers, and the dosage of APS and DMC on the cationic polyacrylamide. The synthesized products were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle charge detector (PCD), and zeta potential analysis. The results showed that the optimum conditions were as follows: optimal monomer proportion: m(AM):m(IA):m(T):m(F) = 23.79:2.39:0.21:0.32; w (DMC) = 28%; w (APS) = 1.0%, reaction time was 3 hours, reaction temperature was 93 °C, stirring speed was 130 rpm, and reaction pH value was 3.0. The solid content of the polymer was 21.2%. By adding the cationic polyacrylamide to old corrugated container pulp, the tensile index increased by 29.7% and the burst index increased by 66.1%, displaying the obvious enhancement of the paper.


Cationic polyacrylamide; Dry strength agent; Synthesis; Applications

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126