Optimization of Selective Acid Hydrolysis of Cellulose for Microcrystalline Cellulose using FeCl3

Jinbao Li, Xiangrong Zhang, Meiyun Zhang, Huijuan Xiu, Hang He

Abstract


In the process of acid hydrolysis of cellulose, hydrolyzing the amorphous regions while retaining the crystalline regions is the key technology for obtaining microcrystalline cellulose products. This paper investigated the influence of FeCl3 on selective acid hydrolysis of crystalline regions and amorphous regions of cellulose. X-ray diffraction data indicated that FeCl3 can enhance the selectivity of acid hydrolysis for amorphous regions of cellulose, thus improving the crystallinity of hydrocellulose. Meanwhile, the crystalline structure did not change. Response surface methodology (RSM) was employed to optimize the crystallinity of hydrocellulose with respect to FeCl3 concentration, HCl concentration, reaction time, and temperature, and the relevant mathematical regression equation model was established. Under optimal conditions, the crystallinity of hydrocellulose was as high as 63.59% at 88.28 °C, 2.46 M HCl, 0.4 M FeCl3, and reaction duration of 64.02 min, which was in agreement with the predicted value.

Keywords


Microcrystalline cellulose; Amorphous regions; Hydrocellulose; Metal ions; Response surface methodology

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126