Comparison Study of Different Ionic Liquid Pretreatments in Maximizing Total Reducing Sugars Recovery

Kiat Moon Lee, Gek Cheng Ngoh, Adeline Seak May Chua, Li Wan Yoon, Teck Nam Ang, Min-Gyu Lee

Abstract


A process scheme combining the most suitable ionic liquid pretreatment, followed by solid acid and enzymatic saccharification was used to maximize the reducing sugars recovery from sago waste. Three types of ionic liquids, i.e. 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM][(EtO)2PO2]) were evaluated based on their performance in terms of the total reducing sugars recovery, chemical cost, and pretreatment energy requirement. The results showed that all the ionic liquids assisted the saccharification processes by dissolving and depolymerizing the carbohydrates of the sago waste into shorter chain soluble oligosaccharides, as well as disrupting the biomass structure to produce an amorphous pretreated solid residue. The solid acid saccharifications of the prehydrolysates obtained from the [BMIM]Cl pretreatment gave the highest reducing sugars recovery (61-63%) irrespective of the solid acid catalyst employed. On the other hand, enzymatic saccharification of [EMIM][OAc] pretreated solid residues showed the highest reducing sugars recovery (29%). A maximum recovery of 90% reducing sugars was achieved via incorporation of the ionic liquid pretreatment, solid acid and enzymatic saccharifications using [BMIM]Cl, Amberlyst 15 (A15) and Trichoderma viride cellulase respectively. This study suggests that the combined sequential process can maximize the reducing sugars recovery from sago waste effectively.

Keywords


Sago waste; Ionic liquid pretreatment; Solid acid saccharification; Enzymatic saccharification; Reducing sugars

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126