Microwave Radiation Effect on Axial Fluid Permeability in False Heartwood of Beech (Fagus sylvatica L.)

Jakub Dömény, Vojtěch Koiš, Aleš Dejmal


This study evaluated the effect of microwave radiation on the fluid permeability and compression strength parallel to the grain of beech false heartwood. European beech (Fagus sylvatica L.) was selected, and samples of false heartwood with dimensions of 30×20×20 mm3 were used. The microwave treatment was carried out in a laboratory device at a frequency of 2.45 GHz. The testing samples were divided into three groups (untreated, treated at 20-s intervals, and treated at 30-s intervals). The permeability was measured in the axial direction using distilled water. The coefficient of specific permeability was calculated using Darcy’s law. The results showed that the coefficient of specific permeability increased by up to 159% in comparison with untreated samples. The compression strength parallel to the grain decreased by up to 15%.


European beech; False heartwood; High-frequency energy; Microwave treatment; Permeability; Compression strength

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126