Investigation of the Role of Reductant on the Size Control of Fe3O4 Nanoparticles on Rice Straw

Roshanak Khandanlou, Mansor Bin Ahmad, Kamyar Shameli, Katayoon Kalantari


The goal of this study was to prepare nanocomposites of rice straw coated with different percentages of Fe3O4 nanoparticles (Fe3O4-NPs) [1.0, 5.0, 10.0, and 20.0 wt. %]. In this process, the size of Fe3O4-NPs changed with varying volumes of NaOH (2M). The Fe3O4-NPs were precipitated with sodium hydroxide from a solution of Fe(II) and (III) chloride in water under ambient conditions and N2 gas by the quick precipitation method using urea as a stabilizer. The rice straw/Fe3O4 nanocomposites (NCs) prepared by this method had magnetic properties in percentages higher than ten (10 wt. %). When the volume of NaOH increased, Fe3O4-NPs with uniform size and better distribution could be prepared, which means that the size of the NPs decreased as the reducing agent was increased. Transmission electron microscopy (TEM) showed that Fe3O4-NPs in rice straw were spherical with diameters from 18.47 to 9.93 nm. The SEM results show that the structure of rice straw underwent no particular change. EDX indicated the presence of Fe3O4-NPs on the surface of rice straw. X-ray powder diffraction (PXRD) indicated that the magnetic Fe3O4-NPs were pure and that the particles were small. The FT-IR results showed that the Fe3O4-NPs were successfully coated on the surface of rice straw.


Rice straw; Nanocomposites; Iron oxide; Nanoparticles; Transmission electron microscopy

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126