High Stiffness Performance Alpha-Grass Pulp Fiber Reinforced Thermoplastic Starch-Based Fully Biodegradable Composites

Francesc X. Espinach, Fernando Julián, Manel Alcalà, Josep Tresserras, Pere Mutjé


Alpha-grass was studied as the reinforcement in a starch-based polymer matrix. Mater-bi®-Y was chosen as a matrix due to its Young’s modulus, in line with that of polypropylene. The test specimens were injection molded and tensile tested. The obtained results were compared to glass fiber reinforced polypropylene. The reinforcing fibers increased the Young’s modulus significantly, obtaining values up to 7.2 GPa, comparable to those obtained with reinforced polypropylene. The contribution of the fibers to the final composite Young’s modulus was also studied, and it was found that was in line with other natural fibers contribution to polypropylene-based composites. Finally, it was found that the value of the efficiency factor of the module remained similar to that of natural fiber reinforced polypropylene.


Fiber-reinforced composites; Young’s modulus; Thermoplastic starch; Biodegradable; Micromechanics modeling

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126