Characterizing the Variance of Mechanical Properties of Sunflower Bark for Biocomposite Applications

Shengnan Sun, Jean-Denis Mathias, Evelyne Toussaint, Michel Grédiac


Characterizing the variance of material properties of natural fibers is of growing concern due to a wide range of new engineering applications when utilizing these natural fibers. The aim of this study was to evaluate the variance of the Young’s modulus of sunflower bark by (i) determining its statistical probability distribution, (ii) investigating its relationship with relative humidity, and (iii) characterizing its relationship with the specimen extraction location. To this end, specimens were extracted at three different locations along the stems. They were also preconditioned in three different relative humidity environments. The x2-test was used for hypothesis testing with normal, Weibull, and log-normal distributions. Results show that the Young’s modulus follows a normal distribution. Two-sample t-test results reveal that the Young’s modulus of sunflower stem bark strongly depends on the conditioning’s relative humidity and the specimen’s extraction location; it significantly decreased as the relative humidity increased and significantly increased from the bottom to the top of the stem. The correlation coefficients between the Young’s modulus of different relative humidity values and of specimen extraction locations were determined. The calculation of correlation coefficients shows a linear relation between the Young's modulus and the relative humidity for a given location.


Sunflower bark; Mechanical testing; Young’s modulus; Statistical analysis; Relative humidity; Specimen extraction location

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126