Infrared-Catalyzed Synthesis of Tannin-Furanic Foams

Gianluca Tondi, Martin Link, Christian Kolbitsch, Alexander Petutschnigg


Formaldehyde-free tannin-based furanic foams were prepared by applying infrared radiation (IR) as an alternative energy source. Up to now, tannin-based rigid foams have been produced via heat conduction or microwave radiation energy. The present innovative heating system allows for the production of extra-light products with low density (≤ 50 kg/m³). The IR-produced lightweight tannin foams (IR-TF) exhibited similar properties to those made by hot pressing (HP-TF), but IR-TF can be synthesized with much shorter production time. Although microwave-produced foams (MW-TF) can be obtained with even shorter production times, the IR-TFs are much more homogeneous. Therefore, the IR radiation-based process resulted in the most suitable compromise between foam properties and production time. Overall, IR-TF showed very competitive structural characteristics, such as high homogeneity, high porosity, and limited orthotropicity, which was similar to that shown by the hot press-produced foams. The mechanical properties and material costs are rather similar, but the production time for IR-TF is considerably shorter.


Formaldehyde-free; Tannin foams; Infrared beam; Light materials; Orthotropicity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126