Cutting Forces and Chip Morphology during Wood Plastic Composites Orthogonal Cutting

Xiaolei Guo, Mats Ekevad, Birger Marklund, Rongrong Li, Pingxiang Cao, Anders Grönlund

Abstract


The effect of chip thickness, rake angle, and edge radius on cutting forces and chip morphology in wood plastic composites (WPCs) orthogonal cutting was investigated. Three types of WPCs, Wood flour/polyethylene composite (WFPEC), wood flour/polypropylene composite (WFPPC), and wood flour/polyvinyl chloride composite (WFPVCC), that were tested exhibited different behavior with respect to the machinability aspects. The cutting forces of WFPVCC were the highest, followed by WFPPC and WFPEC. The most significant factor on the parallel cutting force of these three types of WPCs was the chip thickness, which explained more than 90%, contribution of total variation, while rake angle, edge radius, and the interactions between these factors had small contributions. The most significant factor on the normal cutting force of WPCs was also the chip thickness, which accounted for more than 60% of the total variation. The chips produced included long continuous chips, short continuous chips, flake chips, and granule chips when cutting these three types of WPCs.

Keywords


Wood plastic composites; Cutting force; Chip morphology; Chip thickness; Rake angle; Edge radius

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126