Wettability of Wood Pressure-treated with TiO2 Gel under Hydrothermal Conditions

Tran Van Chu, Pham Van Chuong, Vu Manh Tuong

Abstract


TiO2-treated acacia hybrid (Acacia mangium x auriculiformis) wood was fabricated by combined pressure-impregnation and hydrothermal post-treatment. The wettability and microstructure morphology, as well as the crystalline structure of the titanium dioxide (TiO2) gels of the TiO2-treated wood, were studied. Contact angle measurements of the blank wood and the TiO¬¬2-treated wood indicated a significant increase in hydrophobicity, with contact angles of above 150° in treated samples. Furthermore, the water-resistant property of the treated wood was quite stable, even after immersion in boiling water. Field emission scanning electron microscopy (FE-SEM) results showed that the microstructure morphology and the size of TiO2 gels on the wood surface were dependent on the pH of the post-treatment solutions. Additionally, the presence of amorphous TiO2 gels was indicated by X-ray diffraction (XRD) analysis. The results of this study indicate that combined pressure-impregnation and hydrothermal post-treatment can create a hydrophobic wood-TiO2 composite.

Keywords


Acacia hybrid wood; Contact angle; FE-SEM; TiO2; Wettability; XRD

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126