Effect of Fiber Content and Temperature on the Dielectric Properties of Kenaf Fiber-filled Rigid Polyurethane Foam

Peng Li, Yubo Tao, Sheldon Q. Shi


Kenaf fiber-filled polyurethane foams were prepared using the free rising method. The dielectric constants and the loss tangents of the composites were studied as functions of fiber content (0, 5, 10, and 15 parts per hundred of polyols by weight), temperature (from 30 to 200 °C), and electric field frequency (from 20 Hz to 2 MHz). The dielectric constant and the loss tangent increased with increasing fiber content. The dielectric constant was very high in the range of 101 to 102 Hz and varied little in the range of 103 to 106 Hz, but decreased rapidly above 106 Hz. The loss tangent decreased as the frequency increased. The effect of frequency on the loss tangent value was greater at frequencies below 102 Hz. Higher temperatures led to a higher dielectric constant and loss tangent. When the temperature was above approximately 120 °C, the loss tangent dramatically increased. The incorporation of kenaf fiber can improve the growth rate of the dielectric constant with increasing temperature. The dielectric constant and the loss tangent increased with increasing fiber content, indicating that both the dielectric capability and energy dissipation ability of the composites were improved.


Kenaf fiber; Polyurethane foam; Composites; Dielectric Properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126