Effect of Different Veneer-joint Forms and Allocations on Mechanical Properties of Bamboo-bundle Laminated Veneer Lumber

Dan Zhang, Ge Wang, Wenhan Ren

Abstract


Bamboo-bundle laminated veneer lumber (BLVL) was produced by veneer lengthening technology. The objective of this study was to evaluate the effect of different veneer-joint forms and allocations on the mechanical properties of BLVL. Four veneer-joint forms, i.e., butt joint, lap joint, toe joint, and tape joint, and three lap-joint allocations, i.e., invariable allocation (Type I), staggered allocation (Type II), and uniform allocation (Type III), were investigated in laminates. The results revealed that the mechanical properties of veneer-joint BLVL were reduced in comparison with that of un-jointed BLVL. It was found that the best veneer-joint form was the lap joint laminate, of which the tensile strength, modulus of elasticity, and modulus of rupture values were reduced by 38.41%, 0.66%, and 10.92%, respectively, when compared to the un-jointed control samples. Type III showed the lowest influence on bending and tensile properties, followed by Type II.

Keywords


Bamboo-bundle laminated veneer lumber; Joint forms; Mechanical properties; Joint allocations

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126