Properties of Abutilon theophrasti Fiber-reinforced High-density Polyethylene Composites

Xianquan Zhang, Chenxi Zhang, Weihong Wang

Abstract


Chinese Abutilon theophrasti fiber (AF) ranks first in the world for yield; however, its application in the textile field is limited due to its characteristics. In this study, AF was used to reinforce high-density polyethylene (HDPE). Mechanical property tests, observations of the internal combination, creep behavior, and resistance to accelerate ultraviolet (UV) aging were conducted on these composites with different mass ratios. The results showed that the addition of the fiber could improve the impact resistance of the AF/HDPE composites. However, when the additive fiber content was > 60%, the flexural properties and resistance to creep deformation of the composites significantly decreased. Under the same conditions, the hygroscopic properties of the composites increased. After exposure to accelerated UV aging, the flexural strength of the composites decreased, but their impact resistance slightly improved. Infrared analysis demonstrated that lignin and other botanical compositions induced oxidative degradation in the composites. When the fiber-to-HDPE mass ratio was 60:40, the properties of the material were optimal.

Keywords


Abutilon theophrasti fiber; High-density polyethylene; Composite; Property

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126