Preparation of Superabsorbent Resin from Carboxymethyl Cellulose Grafted with Acrylic Acid by Low-temperature Plasma Treatment

Li Jie Huang, Ying Yang, Yuan Yuan Cai, Ming Liu, Ting Xu, Guang Zai Nong, Shuang Fei Wang

Abstract


A superabsorbent resin (SAR) synthesized from carboxymethyl cellulose (CMC) by grafting acrylic acid (AA) was studied using single-factor analysis. The optimum preparation conditions were as follows: plasma discharge power of 250 W, processing time of 90 s, pressure of 300 Pa, m(CMC):m(AA) ratio of 1:9, m(K2S2O8):m(CMC) ratio of 1:4, and neutralization degree of 40%. Under these conditions, the resin has a salt water absorbency of 38.5 g/g and a stable chlorine dioxide solution absorbency of 27.2 g/g. The structural characterization of the SAR was also studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning colorimetry (DSC). The results showed that the resin was synthesized by grafting copolymerization of CMC and AA, and the water absorbency and thermal stability of the resin were greatly improved compared to CMC alone. This method may provide a new way for high value-added utilization of bagasse.

Keywords


Low-temperature plasma; Carboxymethyl cellulose; Acrylic acid; Superabsorbent resin

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126