Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection

Hailin Feng, Guanghui Li, Sheng Fu, Xiping Wang

Abstract


Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed beforehand to obtain the propagation velocity and the coordinate values. An image reconstruction algorithm for detecting internal decay was proposed based on an interpolation method, which estimated the velocity values of unknown grid points by utilizing the values of the surrounding points. To test the effectiveness of this method, Cinnamomum camphora tree samples were selected and tested using a stress wave tool. The area, positions, and extent of decay in the representative samples were displayed in tomographic images constructed by the interpolation method, and the results demonstrate the performance of the method.

Keywords


Stress wave; Tomography; Internal decay; Nondestructive testing; Trees

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126