High-frequency Heating Behavior of Veneer-based Composites: Modelling and Validation

Peixing Wei, Brad Jianhe Wang, Chunping Dai, Siwei Huang, Xin Rao, Wending Li, Dingguo Zhou

Abstract


A one-dimensional theoretical heat and mass transfer model was developed for high-frequency (HF) heating of veneer-based composites, such as laminated veneer lumber (LVL) and plywood. This model was based on the basic principles of energy and mass conservation, momentum conservation of gas flow, and gas thermodynamic relations. The response variables, including temperature, gas pressure, and moisture content (MC), were linked to basic material properties, such as veneer density, thermal conductivity, permeability, and dielectric properties. Initial and boundary conditions for solving the governing equations were also considered. The model was further validated by experiments with veneer HF heating and LVL HF heating. The model predictions agreed well with the experimental results. During veneer HF heating, the inner veneer core layers had lower MC than the outer surface layers. Compared to conventional hot platen heating, HF heating was proven to be an efficient and robust method for manufacturing veneer-based composites.

Keywords


High-frequency (HF) heating; Veneer-based composites; Heat and mass transfer; Model

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126