Improved Reactivity of Bamboo Dissolving Pulp for the Viscose Process: Post-Treatment with Beating

Chaojun Wu, Shufang Zhou, Chuanshan Zhao, Daiqi Wang

Abstract


Chemical and enzymatic modifications intended to improve the reactivity of dissolving pulp rapidly decrease its yield. In this study, a beating post-treatment intended to increase the reactivity of bamboo dissolving pulp was investigated. Beating post-treatment can create microfibrils on the surface of fibers. The reactivity of unrefined bamboo dissolving pulp prepared via pre-hydrolysis and a subsequent kraft cooking and Op-H-P (oxygen delignification enhanced with H2O2 and sodium hypochlorite) bleaching process was very low. The reactivity increased drastically as the Canadian standard freeness (CSF) of the bamboo dissolving pulp was decreased (i.e., the degree of beating increased). The CSF decreased to 236 mL from its original, higher freeness. The average fiber width was larger and the curling and kink indexes were lower in the pulp of CSF 236 mL compared to those of pulps with greater freeness. However, there was little impact of beating on the crystallinity index of bamboo dissolving pulp.

Keywords


Bamboo dissolving pulp; Reactivity; Beating; Canadian standard freeness

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126