Utilization of Fire Dynamics Simulator Model to Study Rice Husk Gasification in Fixed-bed Gasifier

Ming-Yung Wang, Ching-Po Lin, Yi-Tseng Li, Hsiao-Kang Ma

Abstract


Computational Fluid Dynamic (CFD) modeling applications of the biomass gasification process help to optimize the gasifier. This study aims to investigate the impact of several physical parameters on the behavior of gasification in a fixed-bed downdraft gasifier. To that end, the study presents a comparison of the results computed using the Fire Dynamics Simulator (FDS) model with experimental results of biomass gasification. Therefore, different sets of simulations and experiments have been performed to examine the effects of initial moisture content, equivalence ratio, high heating value (HHV), and cold gas efficiency (CGE). At the optimum operation, the equivalence rate is 0.3, the HHV can reach 5.71 MJ/m3, and the produced hydrogen concentration is 26.53 vol%. For an initial moisture content of 11.18%, the measured CGE is 66.85%, which is within the range of 65.07% to 70.44%. In general, the initial moisture content of the rice husks is suggested to be below 18%. The overall results indicate that the FDS model can effectively simulate and analyze gasification performance inside the gasifier, and the performance of an improved downdraft gasifier system (IDGS) is improved by higher cold gas efficiency.

Keywords


Gasification; CFD Simulation; Biomass; FDS

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126