Selective Production of Phenolic-rich Bio-oil from Catalytic Fast Pyrolysis of Biomass: Comparison of K3PO4, K2HPO4, and KH2PO4

Zhi-Bo Zhang, Qiang Lu, Xiao-Ning Ye, Ling-Ping Xiao, Chang-Qing Dong, Yong-Qian Liu


Phenolic-rich bio-oil can be selectively produced from catalytic fast pyrolysis of biomass impregnated with K3PO4, K2HPO4, or KH2PO4. In this study, the catalytic effects of the three catalysts on the pyrolytic product distribution were investigated and compared via analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments. The results indicated that the three catalysts were all able to inhibit the pyrolytic decomposition of holocellulose to form volatile organic products, while promoting the formation of phenolic compounds from lignin. Hence, phenolic-rich bio-oil could be selectively produced. Among the three catalysts, K3PO4 and K2HPO4 possessed similar capability to increase the yield of the phenolics, which was better than KH2PO4. The phenolic contents among the total pyrolytic products steadily increased as the K3PO4 or K2HPO4 dosage increased. The maximal peak area of the phenolics reached as high as 68.8% (at 50 wt.% K3PO4) or 50.6% (at 50 wt.% K2HPO4) of the total peak area. Therefore, based on these results, K3PO4 was the best catalyst for the selective production of phenolic-rich bio-oil.


Biomass; Phenolic compounds; Catalytic fast pyrolysis; K3PO4; K2HPO4; KH2PO4

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126