Optimization of Medium Components for β-glucosidase Production in Schizophyllum commune KUC9397 and Enzymatic Hydrolysis of Lignocellulosic Biomass

Young Min Lee, Hanbyul Lee, Jun Seok Kim, Jaejung Lee, Byoung Jun Ahn, Gyu-Hyeok Kim, Jae-Jin Kim


Medium components for β-glucosidase (BGL) production in Schizophyllum commune KUC9397 were optimized using a central composite design and response surface methodology. From the various medium components tested, cellulose, soy peptone, and thiamine HCl were selected as the optimal carbon, nitrogen, and vitamin sources, respectively. The highest BGL production was obtained with 2.96% cellulose, 2.30% soy peptone, and 0.11% thiamine HCl. BGL production in the optimized medium was increased 7.2-fold compared to production in an unoptimized medium. Crude enzyme preparation from S. commune KUC9397 was used to saccharify pretreated lignocellulosic biomass. The crude enzyme preparations showed statistically equal saccharification rates as Cellobiase, a commercial BGL. This finding indicates that crude enzymes produced by S. commune KUC9397 have good potential for application in cellulosic biomass conversion systems in place of Cellobiase.


β-glucosidase; Optimization; Saccharification; Schizophyllum commune

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126