Characterization and Hydrothermal Conversion of Lignin Produced from Corncob Acid Hydrolysis Residue

Chao Wang, Gaojin Lyu, Guihua Yang, Jiachuan Chen, Weikun Jiang


Lignin is one of the main components of corncob acid hydrolysis residue (CAHR). It can be used as a feedstock for biomaterial and biochemical production via biorefining. In this study, CAHR lignin was extracted, and enzymatic/mild acidolysis lignin (EMAL) was produced to ensure efficient lignin recovery. Next, hydrothermal conversion of the EMAL was carried out. The influences of process conditions including the temperature, time, and mass ratio of deionized water to EMAL on the hydrothermal conversion were thoroughly investigated to quantify analysis of the aromatics. EMAL produced from CAHR had a structure of the G-S-H type, in which the p-hydroxyphenyl unit was the primary structural unit, followed by the guaiacyl structural unit. The syringyl structural unit was less common. The yields (wt. %) of phenol, guaiacol, and 4-ethyl-phenol reached maxima of 1.26%, 0.75%, and 1.16%, respectively, at a reaction temperature of 310 °C and time of 30 min with a mass ratio of 80:1.


Corncob acid hydrolysis residue; Enzymatic/mild acidolysis lignin; Hydrothermal conversion; Phenolic compounds

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126