Effect of Wood Surface Modification by Atmospheric-Pressure Plasma on Waterborne Coating Adhesion

Bernard Riedl, Costin Angel, Julien Prégent, Pierre Blanchet, Luc Stafford

Abstract


In this study, the effect of an atmospheric-pressure plasma treatment on the surface properties of sugar maple (Acer saccharum March.) and black spruce (Picea mariana (Mill.) was analyzed by contact angle measurement and a water-based coating pull-off testing. The plasma gases used were Ar, N2, CO2, and air. It was found that the wettability with water and the coating adhesion of maple and spruce can be highly influenced by the nature of the plasma gas used and the plasma treatment time. For example, in the case of sugar maple, coating adhesion increased by 66% after 1.5 s of exposure to argon plasma. Repetition of the contact angle measurement one and two weeks after the initial plasma treatment showed that the plasma-induced modification is not permanent. Improvements in wettability and adhesion were also obtained with simpler, cheaper air plasmas, a result promising for the development of advanced plasma reactors operating at atmospheric pressure, specially designed for the wood industry.

Keywords


Atmospheric-pressure plasmas; Sugar maple; Black spruce; Coating adhesion; Water contact angle; Pull-off test

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126