Homogeneous Acylation and Regioselectivity of Cellulose with 2-Chloro-2-Phenylacetyl Chloride in Ionic Liquid

Rongrong Wang, Yingjuan Fu, Menghua Qin, Zhiyong Shao, Qinghua Xu


A cellulose acylate, cellulose-CPAC, was prepared homogeneously in the ionic liquid 1-butyl-3-methyl chloride imidazole ([Bmim]Cl) from cotton dissolving pulp. The pulp was first solubilized in the solvent system [Bmim]Cl/N,N-dimethyl formamide (DMF), and then reacted with 2-chloro-2-phenylacetyl chloride (CPAC) in the presence of an acid-binding agent. The effects of functional conditions including the molar ratio of CPAC/anhydroglucose unit (AGU), reaction time, reaction temperature, kind of acid-binding agent, and cellulose concentration on the degree of substitution (DS) were studied. The reactivities of the three hydroxyl groups in the homogeneous acylation of cellulose with CPAC were also investigated. The results showed that in homogeneous reaction medium, although all the C-6, C-3, and C-2 positions within the cellulose AGU could be substituted by CPAC, the reaction was quite selective for the C-6 OH. The successful synthesis of the cellulose-CPAC was confirmed by FT-IR, 1H NMR, 13C NMR, XRD, and STA. Furthermore, the acylation of cellulose with CPAC decreased the thermal stability of cellulose.


Cellulose; Homogeneous acylation; Ionic liquid; 2-chloro-2-phenylacetyl chloride; Regioselectivity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126