Conducting Graphite/Cellulose Composite Film as a Candidate for Chemical Vapor-Sensing Material

Kaihua Liu, Beihai He, Liying Qian, Junrong Li

Abstract


A type of conductive graphite/cellulose composite film used for chemical vapor-sensing material was prepared at room temperature in the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIm]Cl). Graphite was pretreated with both oxidation and reduction processes. Due to the use of N,N-carbonyldiimidazole (CDI), as a covalent cross-linking agent in [BMIm]Cl, there were limited chemical bonds between the graphite and cellulose. The composite film was analyzed using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XRD). When these conducting films were exposed to certain organic vapors, their electrical resistances quickly changed, showing gas sensitivity. The percolation threshold of the conducting film was about 5 wt%. The gas-sensing behavior of these films in solvent were the opposite of those gas-sensing materials based on a non-polar polymer matrix. A typical negative vapor coefficient (NVC) was observed when the film was placed in polar organic solvents such as methanol, ethanol, and acetone.

Keywords


Graphite/cellulose composite; Gas-sensing material; Negative vapor coefficient

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126