Observed Kinetic Parameters during the Torrefaction of Red Oak (Quercus rubra) in a Pilot Rotary Kiln Reactor

Juan C. Carrasco, Gloria S. Oporto, John Zondlo, Jingxin Wang

Abstract


The torrefaction of red oak (Quercus rubra) was performed in a pilot rotary kiln reactor, and the apparent kinetic results were compared with the results of torrefaction performed in a bench-scale fluidized reactor. Mass loss, gross calorific analyses, ultimate analyses, and proximate analyses were applied to the final torrefied material. The experimental torrefaction temperatures were 250, 275, 300, and 325 °C, and the experimental total torrefaction times were 20, 35, 50, and 80 min. A significant variation of the energy content occurred in the range of temperature between 275 and 300 °C, with the energy yield changing from 97.5% to 83.6%, respectively. The molar ratios H:C:O for the torrefied red oak presented a behavior independent of the experimental equipment when the temperature ranged between 250 and 325 °C. For the torrefaction process of red oak in the pilot rotary kiln reactor, a first-order reaction and one-step kinetic model were fitted with a maximum error of about 7.5% at 325 °C. The observed reaction rate constant (k) for the rotary reactor was 0.072 min−1 at 300 °C, which was 71% lower than the reaction rate constant for torrefied red oak in a bench-scale fluidized reactor. Arrhenius analysis determined an activation energy of 20.4 kJ/mol and a frequency factor of 5.22 min−1. The results suggest significant external heat and mass-transfer resistances in the rotary system.

Keywords


Torrefaction; Red oak; Pilot rotary kiln reactor; Kinetics; Energy yield; Mass loss

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126